Effect of Fragmentation Models on Atmospheric Energy Deposition
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OBJECTIVE & APPROACH

The ultimate goal of our work is to understand the risk posed by asteroids with uncertain entry and strength parameters. During atmospheric entry, bolides deposit energy as they fragment, ablate, and are subjected to drag forces. Simplified fragmentation modeling approaches found in existing literature predict
different energy deposition curves and resulting blast footprints. We compare four models to assess their fidelity, sensitivities to entry and strength parameters, and effects on blast wave risk estimates. We modeled energy deposition as a function of altitude, compared results against the Chelyabinsk meteoroid
case and a high-fidelity simulation, and used a blast wave propagation model to compute resulting ground damage footprints. While the physics of asteroid trajectory, ablation, and fragmentation are important, extracting the key features and sensitivities of the entry process into simpler simulations is vital to

producing an effective risk model.
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VALIDATION TEST - CHELYABINSK SENSITIVITY TO ENTRY PARAMETERS BLAST WAVE FOOTPRINT
Blast wave code provided by Scott L. Lawrence
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Initial strength and a depend on pre-entry fracture conditions and are difficult to determine with the current lack of data.
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